
Increasing sequence 
 

Short formulation. The number sequence is given. Your task is to construct 
the increasing sequence that approximates the given one in the best way. The best 
approximating sequence is the sequence with the least total deviation from the given 

sequence. 

More precisely. Let t1, t2, …, tN is the given number sequence. Your task is to 
construct the number sequence z1, z2, …, zN satisfying to the next conditions: 

1. z1 < z2 < …< zN 

2. The sum  |t1 - z1| + |t2 - z2| +  … + |tN - zN|  should be a minimal feasible. 
 
Input format. There is the integer N (1<=N<=1000000) in the input file first line. 

Each of the next N lines contains single integer – the given sequence element. There 

is tK in the (K+1)-th line. Any element is satisfying to relation  0<=tK<=2000000000. 
 
Output format. The first line must contain the single integer – the minimal possible 

total deviation. Each of the next N lines contains single integer – the recurrent 
element of the best approximating sequence. 

You must output any one from the sequences with a least total deviation.  

 
 

Sample. 

 
Input file   Output file 

7     13 

9     6 

4     7 

8     8 

20     13 

14     14 

15     15 

18      18 



Solution 
1.  
Call the sequence (y1, y2, … yN) nondecreasing if its elements satisfying to condition y1 ≤ 
y2≤ … ≤ yN. 
Let determine the one-to-one correspondence between increasing and nondecreasing 

sequences by the next way: 
 zi = yi+i, i= 1, 2, …, N, 
and correspondently, 

 yi = zi-i, i= 1, 2, …, N 
It’s clear if (zi)i=1÷N  is an increasing sequence, then (yi)i=1÷N is a nondecreasing sequence 

and vice versa. 
 

Reduce the source problem to the problem of the best nondecreasing sequence 

construction. Note =−∑
=

N

i

ii zt
1

=+−∑
=

N

i

ii iyt
1

)( ∑
=

−−
N

i

ii yit
1

)( . 

Therefore, we can operate in this way: 
A. change the sequence ti onto the sequence xi= ti – i, i = 1, 2, …, N 

B. search the nondecreasing sequence (yi)i=1÷N so that the sum ∑
=

−
N

i

ii yx
1

 should be a 

least feasible 
C. compute  zi = yi+i, i= 1, 2, …, N 

 
Definition. The decision sequence is any of such sequences (yi)i=1÷N. 

  

2.  
Lemma 1. Let ba ≤ . Then ( ) abbyayinm

y

−=−+−  and it is reached for all  bya ≤≤ . 

The proof is trivial. 
 

Lemma 2. Let naaa ≤≤≤ K
21

. Then the sum ∑
=

−
n

i

iay
1

 is reached to its minimum for 

a). all 
1+

≤≤ kk aya  if n=2k  b). kay =   if n=2k-1 

 
Proof.  

∑
=

−
n

i

iay
1

 = ( ) ( ) ( ) K+−+−+−+−+−+−
−− 23121 nnn ayayayayayay  

The conclusion of the Lemma follows from it and the Lemma 1 immediately. 
 

 
Definition. The median of the numbers sequence (x1, x2, … xn) is the value of the member 

placed in the center in the nondecreasing order.  
More precisely, let  (a1, a2, … an ) is the permutation of the sequence (x1, x2, … xn) with   
a1 ≤ a2 ≤ … ≤ an; the median of the sequence (x1, x2, … xn) is the value of the       a(n+1) 

div 2 : median(x1, x2, … xn) = a(n+1) div 2 .  

 



Corollary. The sum ∑
=

−
n

i

ixy
1

 is reached to its minimum by y = median(x1, x2, … xn ).  

 
3.  
Analyze the sequence  (yi)i=1÷N . Choose the sequence segment yp, yp+1, …, yq so that  yp-1 
< yp = yp+1 = …= yq < yq+1 (let y0=-∞, yN+1=+∞). 

Designate yp = y.  Then the sum ∑
=

−
q

pi

ii xy  = ∑
=

−
q

pi

ixy  is reached to its minimum by 

y = median(xp, xp+1, … xq). 
 
Hence, we have two statements: 

 
Lemma 3. It’s possible to construct the decision sequence that the each its element is 
equal to some element of the sequence  (xi)i=1÷N. 

 
Lemma 4. It’s possible to construct the decision sequence (yi)i=1÷N of the such kind 

RRR qqqqqqq yyyyyyyyy ===<<===<=== ++++ −−
KKKK 212121 112111

 ( NqR = ) with  

),,,(
21 11 iiii qqqq xxxmediany K

++ −−
=  . 

 
Definition. The decision sequence of this kind is called by canonical. 

  
4. First solution (mathematical induction style). 

 
A. Assume the canonical decision sequence for the sequence (x1, x2, … xk) is 

constructed, i. e. the numbers q1 < q2 <… qS-1 < qS = k  and 
Sqqq yyy <<< K

21
are 

obtained. 

 

B. Let analyze the sequence (xk+1, xk+2, … xm). Assume the corresponding canonical 
decision sequence consists of one segment – all its members are equal to each other 
and equal to Y=median (xk+1, xk+2, … xm). 

 

C. 
• If Yy

Sq < , then set qS+1=m, Yy
Sq =

+1
 and canonical decision sequence for (x1, x2, 

… xm) with m>k is obtained. 

• If Yy
Sq = , then substitute qS on m, and canonical decision sequence for (x1, x2, … 

xm) with m>k is obtained too. 

•  If Yy
Sq > , then merge two last segments: suppose 

),,,,,(
111 mkkq xxxxmedianY

S
KK

++−
=  and decrease S on 1. Simultaneously rearrange 

the numbers mkkq xxxx
S

,,,,, 111
KK ++−

 in the nondecreasing order. It makes possible 

to calculate the median Y. Each segment of the constructed canonical decision 

sequence has been sorting; therefore, the MergeSort procedure is applied to 

merge two segments. The obtained modification of the elements order doesn’t 
influence onto the next steps. 

• If S>0, then we turn out to item B. – jump to B.; 
     if S=0, then canonical decision sequence for (x1, x2, … xm) is constructed – all 



     its members are equal to each other and equal to  median(x1, x2, … xm). 
 

In all, the present algorithm is obtained: 

 
Algorithm 1.  
    for k = 1, 2, …, (N-1) sequentially  

      1. setting m=k+1, 

      2. construct the canonical decision sequence  

         for (x1, x2, … xm) as described above.  

 

The complexity of the presented algorithm is O(N2) with memory requirement  O(N). 

 
 

5. Second solution (Quick-approach based). 
Set  

  L(b1, b2, …, bP) the number of the elements bi of the array (b1, b2, …, bP) such that   
bi < median (b1, b2, …, bP); 

  LE(b1, b2, …, bP) the number of the elements bi of the array (b1, b2, …, bP) such 
that   bi � median (b1, b2, …, bP); 

  G(b1, b2, …, bP) the number of the elements bi of the array (b1, b2, …, bP) such that   

bi > median (b1, b2, …, bP); 
  GE(b1, b2, …, bP) the number of the elements bi of the array (b1, b2, …, bP) such 

that   bi � median (b1, b2, …, bP); 

 
Designate Y = median(x1, x2, …, xN).  

 

Lemma 5.  Let the array (x1, x2, …, xN) could be split on two segments (x1, x2, …, xK) and 
(xK+1, xK+2, …, xN) so that 

i. L(xP, xP+1, …, xK)>GE(xP, xP+1, …, xK)  for all P, 1�P�K; 
ii. L(xK+1, xK+2, …, xQ) �GE(xK+1, xK+2, …, xQ) for all Q, K<Q�N. 

Then  

yK<Y   for any decision sequence (y1, y2, … yN),  

and 
we can find the decision sequence with yK+1�Y. 

 

Proof.  
Let us assume that (y1, y2, … yN) is the some decision sequence with  yK>Y.  
Assume  yK-1�Y, yK-2�Y, …, yP�Y, and yP-1<Y (supposing y0= -∞). 
Let decrease by 1 all numbers yK, yK-1, …, yP.  
If xi<Y  (P�i�K), then |yi - xi| = yi - xi  is decreasing by 1,  
if xi�Y  (P�i�K), then |yi - xi| is either increasing or decreasing by 1. 

Therefore, the increment of the sum ∑
=

−
K

Pi

ii xy  is at most  

GE(xP, xP+1, …, xK) - L(xP, xP+1, …, xK), 
and   GE(xP, xP+1, …, xK) - L(xP, xP+1, …, xK) <0   because of condition i.  
 

If yK=Y now, then the process is stopped, in case yK>Y, we are repeating the process – 
find P such as yK-1�Y, yK-2�Y, …, yP�Y, and yP-1<Y once more, and decrease by 1 all 

numbers yK, yK-1, …, yP. It is clear that process shall be stopping after a few steps. The 



sum ∑
=

−
N

i

ii xy
1

 is non-increasing in this process, so the new sequence (y1, y2, … yN) is the 

decision sequence too. 
 
There is yK = yK-1= …= yP = Y > yP-1 in the anew constructed decision sequence. Let 

decrease by 1 all the numbers yK, yK-1, …, yP once more. After that the sum  ∑
=

−
K

Pi

ii xy  is 

decreasing by  L(xP, xP+1, …, xK) - GE(xP, xP+1, …, xK) > 0. It contradicts to the assumption 

that the initial sequence is the decision sequence. The obtained contradiction proves the 
first conclusion of the Lemma. 
 

The second conclusion is proved analogously. Write this proof for accuracy. 

Let we have some decision sequence (y1, y2, … yN) with  yK+1<Y.  
Assume yK+2<Y, …, yQ<Y, and yQ+1�Y.  
Let increase by 1 all numbers yK+1, yK+2, …, yQ. 
If xi�Y  (K<i�Q), then |yi - xi| = yi - xi  will decrease by 1,  
if xi<Y  (K<i�Q), then |yi - xi| either increase or decrease by 1. 

Therefore, the increment of the sum ∑
=

−
K

Pi

ii xy  is at most  

L(xK+1, xK+2, …, xQ) - GE(xK+1, xK+2, …, xQ). 

This difference is nonpositive  because of condition ii.  

 
If yK+1�Y now, then the process is stopped, in case yK+1<Y, we are repeating the process 
– find Q such as yK+1<Y, yK+2<Y, …, yQ<Y, and yQ+1�Y once more, and increase by 1 all 

numbers yK+1, yK+2, …, yQ. It is clear that process shall be stopping after a few steps. The 

sum ∑
=

−
N

i

ii xy
1

 is nonincreasing in this process, so the new sequence (y1, y2, … yN) is the 

decision sequence too. 
 
Lemma 6.  Set D(P) = L(x1, x2, …, xP) - GE(x1, x2, …, xP), 1�P�N.  
Let P0 is the minimal P such as D(P) achieves to its maximal value: D(P0)�D(P), 1�P�N 
and  D(P0) = D(P) � P0 < P. 

Then the array (x1, x2, …, xN) can be split on two segments in the same way as described 

in the Lemma 5 conditions if and only if  D(P0) > 0 where K= P0.  

 
Proof. 
If L(xP, xP+1, …, xK)�GE(xP, xP+1, …, xK)  for some P, 1<P�K, then  
D(P-1)=D(K) – (L(xP, xP+1, …, xK)-GE(xP, xP+1, …, xK)) � D(K)  and  P-1<K. 
Moreover,  L(xP, xP+1, …, xK) > GE(xP, xP+1, …, xK) for P=1 because of  

L(x1, x2, …, xK) - GE(x1, x2, …, xK) = D(K) >0. 

 
If L(xK+1, xK+2, …, xQ) > GE(xK+1, xK+2, …, xQ) for some Q, K<Q�N, then 
D(Q) = D(K) + (L(xK+1, xK+2, …, xQ) - GE(xK+1, xK+2, …, xQ)) > D(K).  
 
 

Corollary. If the array (x1, x2, …, xN) could be split on two segments in the same way as 
described in the Lemma 5 conditions, then K�N-2. 



Proof.  
D(N) = L(x1, x2, …, xN) - GE(x1, x2, …, xN) < 0 by the median definition.  
It is clear that |D(N)- D(N-1)|=1, hence D(N-1) �0. 
 

Lemma 7. If the array  (x1, x2, …, xN) couldn’t be split in the way described in the Lemma 

5 conditions, and 
the array (x1, x2, …, xN) could be split on to two segments (x1, x2, …, xM) and (xM+1, xM+2, 
…, xN) , M�N, so that  
iii. LE(xP, xP+1, …, xM) �G(xP, xP+1, …, xM)  for all P, 1�P�M; 
iv. LE(xM+1, xM+2, …, xQ) �G(xM+1, xM+2, …, xQ)   for all Q, M<Q�N 
 

then we can construct the decision sequence with y1 = y2 = … = yM = Y. 
 

Proof.  
First prove the existence of the decision sequence with  yM+1 � Y  and  yM � Y   similarly 

to Lemma 5.  
 

Moreover, we know that the array  (x1, x2, …, xN) couldn’t be split in the way described in 
the Lemma 5 conditions. It means (corresponding to Lemma 6) that for all P, 1�P�N,   
D(P) �0, i.e. L(x1, x2, …, xP) � GE(x1, x2, …, xP).  

 
Suppose y1 < Y, y2 < Y, …, yR < Y and yR+1 � Y .  
Let increase by 1 all numbers y1, y2, …, yR.  
 
If xi<Y (1�i�R)   then |yi - xi| = yi - xi  either increase or decrease by 1,  
if xi�Y (1�i�R)   then |yi - xi|  will decrease by 1. 

Therefore,  the increment of the sum ∑
=

−
R

i

ii xy
1

 is at most  

L(x1, x2, …, xR) - GE(x1, x2, …, xR) �0. 
As above repeat this process until y1= Y.  
We are construct the decision sequence with y1 = y2 = … = yR = Y and  yM � Y. Since the 
sequence is nondecreasing hence y1 = y2 = … = yM = Y. 

 

Lemma 8. Any array  (x1, x2, …, xN)  can be split in the way described in the Lemma 7 
conditions. 

Proof.  

Similarly to Lemma 6.  
Designate DE(P) = LE(x1, x2, …, xP) - G(x1, x2, …, xP), 1�P�N.  
Let DE(P) achieves to its maximal value with P=P0  ( DE(P0)�DE(P), 1�P�N).  
Note DE(N) � 0 by the median definition, therefore DE(P0)�0. 
Then we can split the array (x1, x2, …, xN)  by desired manner with M = P0.  

 
Altogether, formulate the solution algorithm. 
Algorithm 2. 

1. Split (if it’s possible) the array (x1, x2, …, xN) so that the conditions of the Lemma 5 

should be fulfilled. The method of the partition search is described in the Lemma 6. 
2. In case this partition exists then apply process of the decision sequence construction 

recursively to the both obtained parts of the sequence. 



3. In case of this partition is impossible, then split the array (x1, x2, …, xN) so that the 
conditions of the Lemma 7 should be fulfilled (by the method described in the Lemma 

8). Set y1 = y2 = … = yM = median (x1, x2, …, xN) and apply recursively the whole 
process of the decision sequence construction to the right partition part. 
 

Complexity analysis. 
In the worst case, the algorithm 2 complexity is O(N⋅T(N)) where T(N) is the complexity 

of the median search. The median can be obtained with O(N) time expenditure (see, 

D.E.Knuth, The art of computer programming, Vol. 3. Sorting and searching. Second 
edition, 1998. Theorem L in chapter 5.3.3). The program quick2.pas is realizing this 

approach. However, the numerical experiment has showed that this program operates 
relatively slow in consequence of the realization complexity. The other program variant 

quick1.pas uses the “reduced” QuickSort to the median search and operates much 

faster than any other from the presented programs. “Reduced” QuickSort means we 
continue search only in one from two parts obtained because of array partition. This 

procedure complexity is O(N2) in the worst case and O(N) on the average.  
 
On the average, the algorithm 2 complexity is O(log N ⋅T(N)). We can prove this fact in 

just the same way as in QuickSort analysis [D.E.Knuth, The art of computer programming, 
Vol. 3. Sorting and searching. Second edition, 1998. Algorithm Q in chapter 5.2.2]. 
 

In abstract  

Complexity  
Program In the worst case On the average 
quick1 O(N

3
) O(N⋅⋅⋅⋅log N) 

quick2 O(N2) O(N⋅⋅⋅⋅log N) 

 

In spite of the fact that  quick1 has a bad theoretical evaluation of the complexity it 

operates much faster than quick2 (and any other of the considered programs) – see 

Appendix. Quick in Quick is really quick! ☺ 

 
 

6. Third solution (dynamical programming). 

 

Put the array (x1, x2, …, xN) in the nondecreasing order and remove all repeating numbers 
from it. As a result we have obtained the array (a1, a2, …, am):  a1 < a2< …< am, moreover 

each of the array (x1, x2, …, xN) elements is encountered in the array (a1, a2, …, am). 
 

Correspondently to Lemma 3 we can construct the decision sequence (y1, y2, …, yN) from 
elements of the array (a1, a2, …, am).  
 

Let denote by ),( jkaim  the least possible value of the sum ∑
=

−
k

i

ii xy
1

 provided that 

jk ayyy =≤≤≤ K21 . 

 

Algorithm 3. 
Direct motion – array aim  filling. 

jaxjaim −=
1

),1( , j=1, 2, …, m 



),1(),(
1

pkaiminmaxjkaim
jp

jk −+−=
≤≤

, j=1, 2, …, m; k=2, 3, …, N 

It is clear that ∑
=

−
n

i

ii xyinm
1

= ),(
1

jNaimnmi
mj≤≤

 

Reverse motion – the sequence (y1, y2, … yN) construction. 
 

Let ),(
1

jNaimnmi
mj≤≤

= ),(
0

jNaim . Then 
0jN ay = . 

 

Find yN-1 from relation 
11 jN ay =

−
,  with j1≤j0  and ),(),1(

01
jNaimxyjNaim NN =−+− . 

 
Then find sequentially yN-2, yN-3, … y2, y1 in the similar way. 
 

 
The complexity of the presented algorithm 3 is O(N2) with memory requirement  O(N2). 

There is its realization in the program dynamic1.pas.  

 

We can manage without 2-dimensional array aim for decision sequence constructing (on 

the reverse motion). In that case, the reverse motion requires to recalculate one-

dimensional array aim(m,*) every time.  Such model needs only O(N) memory and its  

complexity is O(N3). It has realized in the program dynamic2.pas. 

 

 
 
 

 

Appendix.  Comparison of the presented programs speed.  

A plan for generating the test data. 

 
 Time (sec.) 

Test description Test size (N) dynamic2 dynamic1 induct quick1 quick2 

1000 63 <0.1 <0.1 <0.1 <0.1 

2000 173 0.1 <0.1 <0.1 <0.1 

50000 				 				 0.1 0.15 6.1 

100000 				 				 0.3 0.25 8.7 

500000 				 				 1.3 1.5 14.3 

Increasing sequence 
ti+1-ti > 1 

1000000 				 				 2.7 3.3 32.0 

1000 50 <0.1 <0.1 <0.1 <0.1 

2000 100 <0.1 <0.1 <0.1 <0.1 

500000 				 				 1.2 1.1 2.6 

Increasing sequence 
ti+1-ti = 1 

1000000 				 				 2.4 2.3 5.1 

1000 58 <0.1 0.2 <0.1 <0.1 

2000 157 0.2 0.35 <0.1 <0.1 

10000 				 				 2.1 <0.1 0.15 

30000 				 				 9.9 <0.1 0.3 

50000 				 				 22.3 0.12 0.35 

100000 				 				 116.0 0.2 1.0 

500000 				 				 				 1.2 4.9 

Decreasing sequence 

1000000 				 				 				 2.5 9.9 

1000 58 <0.1 0.2 <0.1 <0.1 

2000 157 <0.1 0.35 <0.1 <0.1 

Constant sequence 
(equivalent to decreasing 
sequence) 10000 				 				 2.1 <0.1 0.15 



30000 				 				 9.8 <0.1 0.3 

50000 				 				 22.3 0.12 0.35 

100000 				 				 116.0 0.2 1.0 

500000 				 				 				 1.2 4.9 

 

1000000 				 				 				 2.3 9.8 

2000 136 0.1 0.35 <0.1 <0.1 

100000 				 				 116.0 0.2 1.0 1,1,2,2,3,3,4,4,5,5, … 

1000000 				 				 				 2.1 9.5 

2000 139 0.1 0.35 <0.1 <0.1 

100000 				 				 116.0 0.2 0.95 1,1,1,2,2,2,3,3,3,4,4,4,5,5,5, … 

1000000 				 				 				 2.1 9.6 

2000 131 <0.1 0.35 <0.1 0.1 

100000 				 				 116.0 0.15 0.95 1,2,1,2,1,2,… 

1000000 				 				 				 1.6 9.2 

2000 106 <0.1 <0.1 <0.1 <0.1 
100000 				 				 7.6 0.2 0.7 1,1,3,3,5,5,7,7,9,9, … 

1000000 				 				 17.2 2.1 7.2 

2000 102 <0.1 0.2 <0.1 <0.1 

100000 				 				 10.2 0.2 0.5 1,1,1,4,4,4,7,7,7,10,10,10, … 

1000000 				 				 102 2.1 5.3 

Random sequence, 0�ti�100 1000 56 <0.1 0.2 <0.1 <0.1 

Random sequence, 0�ti�100 2000 139 0.1 0.35 <0.1 <0.1 

Random sequence, 0�ti�10
6 

2000 158 0.15 0.3 <0.1 0.12 

Random sequence, 0�ti�100 10000 				 				 2.1 <0.1 0.15 

Random sequence, 0�ti�10
6 

10000 				 				 1.4-1.6 <0.1 0.3-0.4 

Random sequence, 0�ti�100 30000 				 				 9.8 <0.1 0.3-0.35 

Random sequence, 0�ti�10
6 

30000 				 				 4.8-5.3 0.1 0.7-0.8 

Random sequence, 0�ti�500 50000 				 				 22.3 0.12 0.45-0.5 

Random sequence, 0�ti�10
5
 50000 				 				 19.3 0.12 0.5-0.55 

Random sequence, 0�ti�10
8
 50000 				 				 7.9-8.0 0.15 1.4-1.7 

Random sequence, 0�ti�10
5
 100000 				 				 135 0.2 1.0 

Random sequence, 0�ti�10
9
 100000 				 				 15-16 0.3 2.9-3.2 

Random sequence, 0�ti�10
6
 300000 				 				 740-790 0.6-0.8 3.5-7 

Random sequence, 0�ti�10
9
 300000 				 				 55-60 0.9-1.0 8.5-9.5 

Random sequence, 0�ti�10
6
 500000 				 				 				 1.25-1.3 4.8-4.9 

Random sequence, 0�ti�5⋅10
7
 500000 				 				 160 1.6 12.5-13 

Random sequence, 0�ti�2⋅10
9
 500000 				 				 120-140 1.7-1.8 13-14 

Random sequence, 0�ti�10
6
 1000000 				 				 				 2.2-2.3 9.7-10.0 

Random sequence, 0�ti�5⋅10
8
 1000000 				 				 240-280 3.2-3.4 26-28 

Random sequence, 0�ti�2⋅10
9
 1000000 				 				 240-280 3.3-3.6 26-28 

 

 
 


