
Segment trees and interval trees
Lecture 5

Antoine Vigneron

antoine.vigneron@jouy.inra.fr

INRA

Lecture 5:Segment trees and interval trees – p.1/37

Outline

reference
textbook chapter 10
D. Mount Lectures 13 and 24

segment trees
⇒ stabbing queries
⇒ rectangle intersection

interval trees
⇒ improvement

higher dimension

Lecture 5:Segment trees and interval trees – p.2/37

Stabbing queries

orthogonal range searching: data points, query
rectangle

stabbing problem: data rectangles, query point

in one dimension
input: a set of n intervals, a query point q

output: the k intervals that contain q

in IRd

a box b is isothetic iff it can be written
b = [x1, x

′

1] × [x2, x
′

2] × . . . × [xd, x
′

d]

in other words it is axis–parallel
input: a set of n isothetic boxes, a query point q

output: the k boxes that contain q

Lecture 5:Segment trees and interval trees – p.3/37

Motivation

in graphics and databases, objects are often stored in
their bounding box

Object

Bounding box

query: which objects does point x belong to?

first find objects whose bounding boxes intersect x

Lecture 5:Segment trees and interval trees – p.4/37

Segment trees

Lecture 5:Segment trees and interval trees – p.5/37

Segment tree

a data structure to store intervals, or segments in IR2

allows to answer stabbing queries

in IR2: report the segments that intersect a query
vertical line l

reported

reported

reported

l

query time: O(log n + k)

space usage: O(n log n)

preprocessing time: O(n log n)
Lecture 5:Segment trees and interval trees – p.6/37

Notations

let S = (s1, s2, . . . sn) be a set of segments in IR2

let E be the set of the x–coordinates of the endpoints of
the segments of S

we assume general position, that is: |E| = 2n

first sort E in increasing order

E = {e1 < e2 < . . . e2n}

Lecture 5:Segment trees and interval trees – p.7/37

Atomic intervals

E splits IR into 2n + 1 atomic intervals:
[−∞, e1]

[ei, ei+1] for i ∈ {1, 2, . . . 2n − 1}

[e2n,∞]

these are the leaves of the segment tree

S

E

Lecture 5:Segment trees and interval trees – p.8/37

Internal nodes

the segment tree T is a balanced binary tree

each internal node u with children v and v′ is associated
with an interval Iu = Iv ∪ I ′v

an elementary interval is an interval associated with a
node of T (it can be an atomic interval)

Iu

Iv Iv′

v v′

u

Lecture 5:Segment trees and interval trees – p.9/37

Example

E

S

root

Lecture 5:Segment trees and interval trees – p.10/37

Partitioning a segment

let s ∈ S be a segment whose endpoints have
x–coordinates ei and ej

[ei, ej] is split into several elementary intervals

they are chosen as close as possible to the root

s is stored in each node associated with these
elementary intervals

E

s

root

Lecture 5:Segment trees and interval trees – p.11/37

Standard lists

each node u is associated with a standard list Lu

let ei < ej be the x–coordinates of the endpoints of s ∈ S

then s is stored in Lu iff Iu ⊂ [ei, ej] and
Iparent(u) 6⊂ [ei, ej]

(see previous slide and next slide)

Lecture 5:Segment trees and interval trees – p.12/37

Example

root

Lecture 5:Segment trees and interval trees – p.13/37

Answering a stabbing query

root

l Lecture 5:Segment trees and interval trees – p.14/37

Answering a stabbing query

Algorithm ReportStabbing(u, xl)
Input: root u of T , x–coordinate of l

Output: segments in S that cross l

1. if u == NULL

2. then return
3. output Lu

4. if xl ∈ Iu.left

5. then ReportStabbing(u.left, xl)
6. if xl ∈ Iu.right

7. then ReportStabbing(u.right, xl)

it clearly takes O(k + log n) time

Lecture 5:Segment trees and interval trees – p.15/37

Inserting a segment

E

s

root

Lecture 5:Segment trees and interval trees – p.16/37

Insertion in a segment tree

Algorithm Insert(u, s)
Input: root u of T , segment s. Endpoints of s have

x–coordinates x− < x+

1. if Iu ⊂ [x−, x+]
2. then insert s into Lu

3. else
4. if [x−, x+] ∩ Iu.left 6= ∅
5. then Insert(u.left, s)

6. if [x−, x+] ∩ Iu.right 6= ∅
7. then Insert(u.right, s)

Lecture 5:Segment trees and interval trees – p.17/37

Property

s is stored at most twice at each level of T

proof:
by contradiction
if s stored at more than 2 nodes at level i

let u be the leftmost such node, u′ be the rightmost
let v be another node at level i containing s

u v u′

s

v.parent

then Iv.parent ⊂ [x−, x+]

so s cannot be stored at v
Lecture 5:Segment trees and interval trees – p.18/37

Analysis

property of previous slide implies
space usage: O(n log n)

insertion in O(log n) time (similar proof: four nodes at
most are visited at each level)

actually space usage is Θ(n log n) (example?)

query time: O(k + log n)

preprocessing
sort endpoints: Θ(n log n) time
build empty segment tree over these endpoints: O(n)
time
insert n segments into T : O(n log n) time
overall: Θ(n log n) preprocessing time

Lecture 5:Segment trees and interval trees – p.19/37

Rectangle intersection

Lecture 5:Segment trees and interval trees – p.20/37

Problem statement

input: a set B of n isothetic boxes in IR2

output: all the intersecting pairs in B2

using segment trees, we give an O(n log n + k) time
algorithm when k is the number of intersecting pairs

note: this is optimal

note: faster than our line segment intersection algorithm

space usage: Θ(n log n) due to segment trees

space usage is not optimal (O(n) is possible with
optimal query time and preprocessing time)

Lecture 5:Segment trees and interval trees – p.21/37

Example

b4

b3

b1

b2

b5

output: (b1, b3),(b2, b3),(b2, b4),(b3, b4)

Lecture 5:Segment trees and interval trees – p.22/37

Two kinds of intersections

overlap

intersecting edges

⇒ reduces to intersection
reporting for isothetic
segments

inclusion

we can find them using
stabbing queries

Lecture 5:Segment trees and interval trees – p.23/37

Reporting overlaps

equivalent to reporting intersecting edges

plane sweep approach

sweep line status: BBST containing the horizontal line
segments that intersect the sweep line, by increasing
y–coordinates

each time a vertical line segment is encountered, report
intersection by range searching in the BBST

preprocessing time: O(n log n) for sorting endpoints

running time: O(k + n log n)

Lecture 5:Segment trees and interval trees – p.24/37

Reporting inclusions

still using plane sweep

sweep line status: the boxes that intersect the sweep
line l, in a segment tree with respect to y–coordinates

the endpoints are the y–coordinates of the horizontal
edges of the boxes
at a given time, only rectangles that intersect l are in
the segment tree
we can perform insertion and deletions in a segment
tree in O(log n) time

each time a vertex of a box is encountered, perform a
stabbing query in the segment tree

Lecture 5:Segment trees and interval trees – p.25/37

Remarks

at each step a box intersection can be reported several
times

in addition there can be overlap and vertex stabbing a
box at the same time

to obtain each intersecting pair only once, make some
simple checks (how?)

Lecture 5:Segment trees and interval trees – p.26/37

Interval trees

Lecture 5:Segment trees and interval trees – p.27/37

Introduction

interval trees allow to perform stabbing queries in one
dimension

query time: O(k + log n)

preprocessing time: O(n log n)

space: O(n)

reference: D. Mount notes, page 100 (vertical line
stabbing queries) to page 103 (not including vertical
segment stabbing queries)

Lecture 5:Segment trees and interval trees – p.28/37

Preliminary

let xmed be the median of E

Sl: segments of S that are completely to the left of
xmed

Smed: segments of S that contain xmed

Sr: segments of S that are completely to the right of
xmed

xmed

Smed

Sr

Sl

Lecture 5:Segment trees and interval trees – p.29/37

Data structure

recursive data structure

left child of the root: interval tree storing Sl

right child of the root: interval tree storing Sr

at the root of the interval tree, we store Smed in two lists
ML is sorted according to the coordinate of the left
endpoint (in increasing order)
MR is sorted according to the coordinate of the right
endpoint (in decreasing order)

Lecture 5:Segment trees and interval trees – p.30/37

Example

s1

s2s3

s5

s7

s4

s6

Interval tree on
s3 and s5

Interval tree on

Ml = (s4, s6, s1)
Mr = (s1, s4, s6)

s2 and s7

Lecture 5:Segment trees and interval trees – p.31/37

Stabbing queries

query: xq, find the intervals that contain xq

if xq < xmed then
Scan Ml in increasing order, and report segments
that are stabbed. When xq becomes smaller than the
x–coordinate of the current left endpoint, stop.
recurse on Sl

if xq > xmed

analogous, but on the right side

Lecture 5:Segment trees and interval trees – p.32/37

Analysis

query time
size of the subtree divided by at least two at each
level
scanning through Ml or Mr: proportional to the
number of reported intervals
conclusion: O(k + log n) time

space usage: O(n) (each segment is stored in two lists,
and the tree is balanced)

preprocessing time: easy to do it in O(n log n) time

Lecture 5:Segment trees and interval trees – p.33/37

Stabbing queries in higher
dimension

Lecture 5:Segment trees and interval trees – p.34/37

Approach

in IRd, a set B of n boxes

for a query point q find all the boxes that contain it

we use a multi–level segment tree

inductive definition, induction on d

first, we store B in a segment tree T with respect to
x1–coordinate

for all node u of T , associate a (d − 1)–dimensional
multi–level segment tree over Lu, with respect to
(x2, x3 . . . xd)

Lecture 5:Segment trees and interval trees – p.35/37

Performing queries

search for q in T

for all nodes in the search path, query recursively the
(d − 1)–dimensional multi–level segment tree

there are log n such queries

by induction on d, we can prove that

query time: O(k + logd n)

space usage: O(n logd n)

preprocessing time : O(n logd n)

Lecture 5:Segment trees and interval trees – p.36/37

Improvements

fractional cascading at the deepest level of the tree:
gains a factor log n on the query time bound

interval trees at the deepest level:
gains log n on the space bound

Lecture 5:Segment trees and interval trees – p.37/37

	Outline
	Stabbing queries
	Motivation
	Segment trees
	Segment tree
	Notations
	Atomic intervals
	Internal nodes
	Example
	Partitioning a segment
	Standard lists
	Example
	Answering a stabbing query
	Answering a stabbing query
	Inserting a segment
	Insertion in a segment tree
	Property
	Analysis
	Rectangle intersection
	Problem statement
	Example
	Two kinds of intersections
	Reporting overlaps
	Reporting inclusions
	Remarks
	Interval trees
	Introduction
	Preliminary
	Data structure
	Example
	Stabbing queries
	Analysis
	Stabbing queries in higher dimension
	Approach
	Performing queries
	Improvements

