coLuMN 10: SORTING

How should you sort a sequence of records into order? The answer is usu-
ally straightforward:
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Unfortunately, this plan doesn’t always work. Some systems don’t have a sort
command, and existing sorts may not be general enough or efficient enough to
solve a particular problem (as in Section 1.1). In such cases, a programmer
has no choice but to write a sort routine.

Insertion Sort is the method most card nlavers use to sort their cards. Thev
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keep the cards dealt so far in sorted order, and as each new card arrives they
insert it into its proper relative position. To sort the array X[l..N] into
increasing order we’ll start with the sorted subarray X[1..1] and then insert the
elements X[2], ..., X[N], as in the following pseudocode.

for I := 2 to N do
/* Invariant: X[1..I-1] is sorted »/
/% Goal: sift X[I] down to its

proper place in X[1. -1]1 =/
revrss pect®T =

The following four lines show the progress of the algorithm on a four-element
array. The *“** represents the variable I; elements to its left are sorted, while
elements to its right are in their original order.
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The sifting down is accomplished by a right-to-left loop that uses the vari-
able J to keep track of the element being sifted. The loop swaps the element
with its predecessor in the array as long as there is a predecessor (that is,
J>1) and the element hasn’t reached ltS ﬁnal posmon (that is, it is out of
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for I := 2 to N do
/% Invariant: X[1..I-1] is sorted =/

while J > 1 and X[J-1] > X[J] do
Swap(x[J], X[J-1])

J = J-1
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just five lines of easy code. (In a few zealously protective la nguages this code
may generate a run-time error; see Problem 2.)

If you don’t have a Swap routine handy, the following assignments use the
variable T to exchange X[/] and X[/ —1].

T := X[J]; X[J] := X[J-1]; X[J-1] := T

This code opens the door for a simple exercise in the code tuning of Column 8.
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ginally in X[/]), we can move the assignments to and from T out of the loop,
and change the comparison as follows.

for I := 2 to N do
/% Invariant: X[1..I-1] is sorted =/

T := X[J]

while J > 1 and X[J-1] > T do
X[J] := X[J-1]
J = J-1

X[J] =T

This code shifts elements right into the hole vacated by X[/ ], and finally moves
T into the hole once it is in its final position. It is seven lines long and a little
more subtie than the simpie Insertion Sort, but on my system it takes just one
third the time of the first program.

This routine is easy to translate, even into primitive languages such as thls
dialect of BASIC.

1000 * SORT X(1..N), N>1

1010 FOR I=2 TO N

1015 INVARIANT: X(1..I-1) IS SORTED
1020 J=I

1030  T=X(J)

1040 IF J<=1 OR X(J-1)<=T THEN 1080

1050 X(J)=xX(J-1)
1060 J=J-1
1070 GOTO 1040

1080 X(J)=T
1090 NEXT I

1100 RETURN
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When I compared the run time of this program with an “efficient” sort from a
1982 BASIC text (whose sneaky logic used twice as many lines of code), I
found that this simple routine required less than half the run time of its more
complex cousin.

On random data as well as in the worst case, the time of Insertion Sort on
an N-element array is proportional to N2. Fortunately, if the array is already
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almost sorted, the prograri 18 much faster because each element sifts down Jubl.
a short distance

10.2 Quicksort — An O(N log N) Algorithm

This algorithm was described by C. A. R. Hoare in his classic paper
*“Quicksort” in the Computer Journal 5, 1, April 1962, pp. 10-15. It uses the
divide-and-conquer schema of Section 7.3: to sort an array we divide it into two

smaller pieces and sort those recursively. For instance, to sort the eight-
element array

s5141]59]2653]58 [97]93
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we partition it around the first element (55) so that all elements less than 55
are to the left of it, while all greater elements are to its right
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If we then recursively sort the subarray from 1 to 3 and the subarray from 5 to
8, independently, the entire array is sorted.

The average run time of this algorithm is much less than the O(N 2y time of
Insertion Sort because a partitioning operation goes a long way towards sorting
the sequence. After a typical partitioning of N elements, there are about N/2
elements above the partition value and N/2 elements below it. In a similar
amount of run time, the sift operation of Insertion Sort manages to get just one
more element into the right place.

The above idea leads to a sketch of a recursive subroutine. We’ll represent
the portion of the array we’re dealing with by the two indices L and U, for the
lower and upper limits. The recursion stops when we come to an array with
fewer than two elements. So the code is
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procedure QSort(L,U)
if L >= U then
/% at most one element, do nothing */
else

/+ partition array around a given
value, which is eventually
placed in its correct position P

*/
QSsort(L, P-1)
QSort(P+1, U)

To partition the array around the value T we’ll use a simple scheme that I
learned from Nico Lomuto of Alsys, Inc. There are faster programs for this
jobT but this routine is so easy to understand that it’s hard to get wrong, and
it is Dy no means slow. Given the value T , W& are to rearrange X [ﬂ Dj and
compute the index M (for “middle”) such that all elements less than T are to
one side of M, while all other elements are on the other side. We’ll accomplish
the job with a simple for loop that scans the array from left to right, using the

variables / and M to maintain the following invariant in array X.

<T =T ?

A A A
i | 1

A M 1 B

When the code inspects the I element there are two cases to consider. If
X[I)=T then all is fine; the invariant is still true. On the other hand, when
X[I]<T, we can regain the invariant by incrementing M to index the new loca-
tion of the small element, and then swapping that element with X{/]. The
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complc(e parttoning code is

M o= A1
for I := A to B do
if X[I] < T then
M := M+1

Swap(X[M], X[I])

T Most presentations of Quicksort use a partitioning scheme based on two approaching indices, like
the one described in Problem 3. Although the basic idea of that scheme is simple, I have always
found the details tricky — I once spent the better part of two days chasing down a bug hiding in a

short narhhnnmo !ggn A reader of a nrf-I!mn!arv draft complained that the standard two-index

calsd L=} R LR St i b 2% Sqiale

method is in fact simpler than Lomuto’s, and sketched some code to make his point; I stopped look-

ing after I found two bugs.
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In Quicksort we’ll partition the array X[L..U] around the value T=X iLi,
s0 A will be L+1 and B will be U. Thus the invariant of the partitioning loop

is depicted as

T <T =T ?

) )

L M
When the loop terminates we have

~ 3

T <T =T
! ! !
L M U
We then swap X [L] with X[M] to giveT
<T T =T
1 ! !
L M U
We can now recursively call the routine with the parameters (L,M —1) and
M+1,0).
The ahnve aloanrithm alwave nartitinne arcr nd the fi
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nt in the array.

This choice can require excessive time and space for some common inputs —
for instance, arrays that are already sorted. We do far better to choose a parti-
tioning element at random; we accomplish this by swapping X[L] with a ran-
dom entry in X[L..U]. If you don’t have the RandInt function used in the code
below, you can make one using a function Rand that returns a random real dis-
tributed uniformly in [0,1) by the expression L +int(Rand X(U +1—L)). In the
unlikely event that your system doesn’t even have that routine, consult Knuth’s

Seminumerical Algorithms. But whether you use a system routine or make your

own, be careful that Randint returns a value in the range L..U — a value out
of range is an insidious bug.

The final code, Quicksort 1, is presented on the next page. To sort the
array X[1..N] we call the procedure

Qsort(1,N)

T It is tempting to ignore this step and to recur with parameters (L,M) and (M+1,U); this gives an
infinite loop when T is the strictly greatest element in the subarray. I would have caught the bug
had I tried to verify termination, but the astute reader can guess how I really discovered it. Miri-
am Jacob found an elegant proof of incorrectness: since X [L] is never moved, the sort can only
work if the minimum element in the array starts in X[1].
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procedure QSort(L,U)
if L < U then
Swap(X[L], X[RandInt(L,U)])
T := X[L]
M:=L
for I := L+1 to U do
/% Invariant: X[L+1..M] < T and
X[M+1..I-1] >= T =/
if X[I] < T then
= M+1
Swap(X[M], X[I])
Swap(X[L], X[M])
/% X[L..M-1] < X[M] <= X[M+1..U] »/
QSort(L, M-1)
QSort(M+1, U)
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Most of the Proor o1 correctness O this program was given in its derivation
(which is, of course, its proper place). The proof proceeds by induction: the
outer if statement correctly handles empty and single-element arrays, and the
partitioning code correctly sets up larger arrays for the recursive calls. The
program can’t make an infinite sequence of recursive calls because the element
X[M] is excluded at each invocation; this is the same argument that Section 4.3
used to show that binary search terminates.

Let’s turn now to the performance of the program. I won’t give the details
here, but Quicksort runs in O (N log N) time and O (log N) stack space on the
average, for any input array with distinct elements. The mathematical argu-
ments are similar to those in Section 7.3, and Solution 10 contains data on one
implementation. The random performance is a result of calling the random
number generator, rather than an assumption about the distribution of inputs.
Problems 3, 5 and 11 show ways of improving Quicksort’s worst-case perfor-
mance. Most algorithms texts analyze Quicksort’s run time mathematically,
and also prove the lower bound that any comparison-based sort must use
O(N log N) comparisons; Quicksort is therefore close to optimal.

Fans of Column 8 have probably noticed several ways to tune the Quicksort
code to make it faster. The simplest is indicated in Solution 8.10: we should

expand the code for the Swap procedure in the inner loop (because the other

two calls to Swap aren’t in the inner loop, writing them in line would have a
negligible impact on the speed). On my system this reduced the run time to
two-thirds of what it was previously. We might also observe that a great deal
of time is spent sorting very small subarrays. It would be faster to sort those
using a simple method like Insertion Sort rather than firing up all the
machinery of Quicksort.

Bob Sedgewick developed a particularly clever implementation of this idea.

W hen Quicksort is called on a small odb"'fay {that is, when U and L are uvnn),

we do nothmg. We implement this by changing the first if statement in the
Quicksort procedure to
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if U-L > CutOff then

where CutOff is a small integer. When the program finishes the array will not
be sorted, but it will be grouped into small clumps of randomly ordered values
such that the elements in one clump are less than elements in any clump to its
right. We must clean up within the clumps by another sort method; because
the array is almost sorted, Insertion Sort is just right for the job. We sort the
entire array by the code

QSort(1,N)
InsertionSort

To determine the best choice for CwtOff, I ran the program twice at all
values of CwtOff from 1 to 50, with N fixed at 5000. This graph plots the
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CutOff value

A good value of CutOff was 15; values between 10 and 20 give savings to
within a few percent of that. This change reduced the program, which we’ll
call Quicksort 2, to half of its original time, or another twenty-five percent
reduction after writing the Swap procedure in line.

10.3 Principles

The programs we’ve studied are summarized in the following table. They
were impiemented in C on a VAX-11/750 and timed on random 32-bit integers;
the logarithms are base two. Insertion Sort 1 is the first sort given; Insertion
Sort 2 writes the Swap code in line and moves assignments (0 and from T out
of the loop. Quicksort 1 is the first Quicksort; Quicksort 2 writes the Swap
code in line and sorts small subarrays by calling Insertion Sort 2 after the
recursive call on (1,N). The System Sort is the UNIX syslem’s gsorr. The
run-time functions are the result of fitting the known form of the functions to
the observed times in the table.
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PROGRAM LINES OF RUN TIME IN TIME IN SECONDS FOR SIZE
C CODE | MICROSECONDS 100 1000 10000
Insertion Sort 1 5 | 17N? 0.17 17.3 1730
Insertion Sort 2 7 6N? 0.06 5.7 570
Quicksort 1 11 63N log, N 0.05 0.63 7.8
Quicksort 2 20 32N log; N 0.03 0.32 4.3
System Sort 1 97N log, N 0.06 1.0 13.6

We'll see yet another O(N log N) sort in Section 12.4.
There are several important lessons to be learned from the table, about both
sorting in particular and programming in general.
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The system soit is €asy ana reiat “v'cnj fast; it is slower than the hand-made
Quicksorts only because its general and flexible interface uses a procedure
call for each comparison. If a system sort can meet your needs, don’t even
consider writing your own code. (Section 2.8 describes two sorts available
on the UNIX system: the sort program and the gsort routine.)

Insertion Sort is simple to code and may be fast enough for small sorting

iohe. Sortino 10 000 inteoere with Incertion Sart 9 requires iust ten minute
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on my system.

For large N, the O(N log N) run time of Quicksort is crucial. The algo-
rithm design techniques of Column 7 gave us the basic idea for this divide-
and-conquer algorithm, and the program verification techniques of Column
4 helped us implement the idea in straightforward, succinct and efficient
code.

Even though the big speedups are achieved by changing algorithms, the

code tuning techniques of Column 8 speed up Insertion Sort by a factor of 3
and Quicksort by a factor of 2.

10.4 Problems
1. Like any other powerful tool, sorting is often used when it shouldn’t be and

often not used when it should be. Explain how sortineg could be either
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overused or underused when calculating the following statistics of an array
of N floating point numbers: minimum, maximum, mean, median and
mode.

2. Suppose that X[1..10) and T are declared to be integers; what happens when
the following code is executed?
I = 11
if I <= 10 and X[I) < T then I := I+1

In many languages the code will execute gracefully without altering 7. On
some systems, though, the code might abort because the array index / is out
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of bounds. What would yours do? Why is this an issue in the various
Insertion Sorts? How can the problem be fixed in those sorts?

. The Quicksort program in the text runs in time proportional to N? if

X[1]=X[2]=...=X[N]; explain why. That problem is avoided in Problem

I1 and in the fellcwmg Quicksort, which is auapwu from Sedgewick’s paper

cited in Section 10.5.

procedure Qsort(L, U)
if L < U then

Swap(X[L], X[RandInt(L,U)])

I :=L; J :=0U+1; T := X[L]

loop
repeat I := I+1 until X[I] >= T
repeat J = J-1 until X[J] <= T
if J < I then break
Swap(xlT]l, X[J1)

Swap(X[L]:‘;Eél)‘
Qsort(L, J-1)

Qsort(I, U)

This code assumes that no key in X is greater than X [N +1]; it uses that
position as a sentinel element to increase the speed of the inner loop. On
arrays of distinct elements, this code makes fewer swaps than Quicksort 1
and is therefore almost twice as fast. Use the techniques of Column 4 to
prove that this program is correct. How does it solve the problem of dupli-
cate keys?

. [R. Sedgewick] Speed up Lomuto’s partitioning scheme by using X[L] as a

sentinel like that described in Problem 8.5. Show how this scheme allows
you to remove the Swap after the loop.

. Although chksort uses only 0(log N) stack space n the average, it can

use linear space in the worst case. Explain why, then modify the program
to use only logarithmic space in the worst case.

[M. D. Mcllroy] Show how to use Lomuto’s partitioning scheme to sort
varying-length bit strings in time proportional to the sum of their lengths.

. Implement several sorting programs and summarize them in a table like

that in the text. In addition to Insertion Sort and Quicksort, you may want
to consider Shell Sort (fair speed with simple code), Heapsort (minimal
extra space and good worst-case speed — see Section 12.4), and Radix Sort
(applicable only in special cases, but fast for those — see Solution 6). Does
your table support the same conclusions?

Sketch a one-page procedure to show a user of your system how to select a
sorting routine. Make sure that your method considers the importance of

ce eneral-
run time, space, programmer time (development and maintenance), general

ity (what if I want to sort character strings that represent R‘om‘an
numerals?), stability (items with equal keys should retain their relative
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order), special properties of the input data, etc. As an extreme test of your
procedure, try feeding it the sorting problem described in Column 1.

9. Write a program for finding the K”-smallest element in the array X[1..N]
in O(N) expected time. Your algorithm may permute the elements of X.

.
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10. Gather and display empirical data on the run time of a Quicksort program.
11. Write a “‘fat pivot™ partitioning routine with the postcondition

<T =T >T

How would you incorporate the routine into a Quicksort program?

12. Study sorting methods used in non-computer applications (such as mail
rooms and change sorters).

13. The Quicksort programs in this column choose a partitioning element at
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random. Study better choices, such as the edlan element of a sample
from the array.

10.5 Further Reading

What to read about sorting depends on why you’re reading. To learn more
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The following references are particularly helpful for programmers writing sort
routines.

If you want to write the ultimate primary-memory sort routine, see
Sedgewick’s “Implementing Quicksort Programs” in the October 1978 Com-
munications of the ACM .
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and Plauger’s Software Tools or Software Tools in Pascal.

Programmers who are about to spend several months writing a quality sys-
tem sort should study Knuth’s Art of Computer Programming, volume 3:
Sorting and Searching. Linderman’s ‘“Theory and practice in the construc-

tion of a working sort routine” (in The Bell Laboratorzes Technical Journal
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real system sort.
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